
Solution of nonlinear equations

Goal: find the roots (or zeroes) of a nonlinear function:

given f : [a, b]→ R, find α ∈ R such that f (α) = 0.

Various applications, e.g. optimization: finding stationary points of a
function leads to compute the roots of f ′.

When f is linear (and its graphic is a straight line) the problem is very
easy. But when the analytic expression of f is more complicated, even
though we have an idea of the location of its roots (with the help of
graphics), we are unable to compute them exactly. Even finding the roots
of polynomials of higher degree is difficult.

All the methods available are iterative: starting from an initial guess x (0),
we construct a sequence of approximate solutions x (k) such that

lim
k→∞

x (k) = α.
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Questions/comments regarding iterative methods:

Does the sequence converge?

Does convergence depend on the initial guess x (0)? (In general, yes)

How fast is the convergence? (or: what is the order of convergence?)

When to stop the procedure? (how many iterations should we do?
need for reliable stopping criteria)

Bisection method
Simplest and robust method, based on the intermediate value theorem:

Theorem

(Bolzano)Let f : [a, b]→ R be a continuous function that has opposite
signs in [a, b] (meaning, to be precise, that f (a)f (b) < 0). Then there
exists α ∈]a, b[ such that f (α) = 0.

Note that the root α does not need to be unique (take f (x) = cos(x) on
[0, 3π]). Hence, under the hypotheses of Bolzano’s theorem, we will look
for a root of the equation essentially without choosing which one.

December 11, 2023 2 / 24



Questions/comments regarding iterative methods:

Does the sequence converge?

Does convergence depend on the initial guess x (0)? (In general, yes)

How fast is the convergence? (or: what is the order of convergence?)

When to stop the procedure? (how many iterations should we do?
need for reliable stopping criteria)

Bisection method
Simplest and robust method, based on the intermediate value theorem:

Theorem

(Bolzano)Let f : [a, b]→ R be a continuous function that has opposite
signs in [a, b] (meaning, to be precise, that f (a)f (b) < 0). Then there
exists α ∈]a, b[ such that f (α) = 0.

Note that the root α does not need to be unique (take f (x) = cos(x) on
[0, 3π]). Hence, under the hypotheses of Bolzano’s theorem, we will look
for a root of the equation essentially without choosing which one.

December 11, 2023 2 / 24



Questions/comments regarding iterative methods:

Does the sequence converge?

Does convergence depend on the initial guess x (0)? (In general, yes)

How fast is the convergence? (or: what is the order of convergence?)

When to stop the procedure? (how many iterations should we do?
need for reliable stopping criteria)

Bisection method
Simplest and robust method, based on the intermediate value theorem:

Theorem

(Bolzano)Let f : [a, b]→ R be a continuous function that has opposite
signs in [a, b] (meaning, to be precise, that f (a)f (b) < 0). Then there
exists α ∈]a, b[ such that f (α) = 0.

Note that the root α does not need to be unique (take f (x) = cos(x) on
[0, 3π]). Hence, under the hypotheses of Bolzano’s theorem, we will look
for a root of the equation essentially without choosing which one.

December 11, 2023 2 / 24



Questions/comments regarding iterative methods:

Does the sequence converge?

Does convergence depend on the initial guess x (0)? (In general, yes)

How fast is the convergence? (or: what is the order of convergence?)

When to stop the procedure? (how many iterations should we do?
need for reliable stopping criteria)

Bisection method
Simplest and robust method, based on the intermediate value theorem:

Theorem

(Bolzano)Let f : [a, b]→ R be a continuous function that has opposite
signs in [a, b] (meaning, to be precise, that f (a)f (b) < 0). Then there
exists α ∈]a, b[ such that f (α) = 0.

Note that the root α does not need to be unique (take f (x) = cos(x) on
[0, 3π]). Hence, under the hypotheses of Bolzano’s theorem, we will look
for a root of the equation essentially without choosing which one.

December 11, 2023 2 / 24



Questions/comments regarding iterative methods:

Does the sequence converge?

Does convergence depend on the initial guess x (0)? (In general, yes)

How fast is the convergence? (or: what is the order of convergence?)

When to stop the procedure? (how many iterations should we do?
need for reliable stopping criteria)

Bisection method
Simplest and robust method, based on the intermediate value theorem:

Theorem

(Bolzano)Let f : [a, b]→ R be a continuous function that has opposite
signs in [a, b] (meaning, to be precise, that f (a)f (b) < 0). Then there
exists α ∈]a, b[ such that f (α) = 0.

Note that the root α does not need to be unique (take f (x) = cos(x) on
[0, 3π]). Hence, under the hypotheses of Bolzano’s theorem, we will look
for a root of the equation essentially without choosing which one.

December 11, 2023 2 / 24



Questions/comments regarding iterative methods:

Does the sequence converge?

Does convergence depend on the initial guess x (0)? (In general, yes)

How fast is the convergence? (or: what is the order of convergence?)

When to stop the procedure? (how many iterations should we do?
need for reliable stopping criteria)

Bisection method
Simplest and robust method, based on the intermediate value theorem:

Theorem

(Bolzano)Let f : [a, b]→ R be a continuous function that has opposite
signs in [a, b] (meaning, to be precise, that f (a)f (b) < 0). Then there
exists α ∈]a, b[ such that f (α) = 0.

Note that the root α does not need to be unique (take f (x) = cos(x) on
[0, 3π]). Hence, under the hypotheses of Bolzano’s theorem, we will look
for a root of the equation essentially without choosing which one.

December 11, 2023 2 / 24



Questions/comments regarding iterative methods:

Does the sequence converge?

Does convergence depend on the initial guess x (0)? (In general, yes)

How fast is the convergence? (or: what is the order of convergence?)

When to stop the procedure? (how many iterations should we do?
need for reliable stopping criteria)

Bisection method
Simplest and robust method, based on the intermediate value theorem:

Theorem

(Bolzano)Let f : [a, b]→ R be a continuous function that has opposite
signs in [a, b] (meaning, to be precise, that f (a)f (b) < 0). Then there
exists α ∈]a, b[ such that f (α) = 0.

Note that the root α does not need to be unique (take f (x) = cos(x) on
[0, 3π]). Hence, under the hypotheses of Bolzano’s theorem, we will look
for a root of the equation essentially without choosing which one.

December 11, 2023 2 / 24



Questions/comments regarding iterative methods:

Does the sequence converge?

Does convergence depend on the initial guess x (0)? (In general, yes)

How fast is the convergence? (or: what is the order of convergence?)

When to stop the procedure? (how many iterations should we do?
need for reliable stopping criteria)

Bisection method
Simplest and robust method, based on the intermediate value theorem:

Theorem

(Bolzano)Let f : [a, b]→ R be a continuous function that has opposite
signs in [a, b] (meaning, to be precise, that f (a)f (b) < 0). Then there
exists α ∈]a, b[ such that f (α) = 0.

Note that the root α does not need to be unique (take f (x) = cos(x) on
[0, 3π]). Hence, under the hypotheses of Bolzano’s theorem, we will look
for a root of the equation essentially without choosing which one.

December 11, 2023 2 / 24



Bisection method

Idea: to construct a sequence by repeatedly bisecting the interval and
selecting to proceed the sub-interval where the function has opposite
signs. In the hypotheses of the intermediate value Theorem, we will

divide the interval in two by computing the midpoint c of the interval:
c = (a + b)/2;

compute the value f (c);

if f (c) = 0 we found the root (very unlikely!),

if not, that is, if f (c) 6= 0, there are two possibilities:
I f (a)f (c) < 0 (and then f has opposite signs on [a, c]),
I or f (b)f (c) < 0 (and then f has opposite signs on ]c , b[).

The method selects the subinterval where f has opposite signs as the new
interval to be used in the next step. In this way an interval that contains a
zero of f is reduced in width by 50% at each step. The process is
continued until the interval is sufficiently small.
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Bisection method: Algorithm

INPUT: Function f, endpoints a, b, tolerance TOL, max # iterations
NMAX

CONDITIONS: a < b, either f (a) < 0 and f (b) > 0 or f (a) > 0 and
f (b) < 0 (or simply check that f (a)f (b) < 0)
OUTPUT: value which differs from a root of f(x)=0 by less than TOL

N =1
While N ≤NMAX (limit iterations to prevent infinite loop)
c = (a + b)/2 (new midpoint)

If f (c) = 0 or (b − a)/2 < TOL then (solution found)
Output (c)
Stop
End

N = N + 1 (increment step counter)
If sign(f (c)) = sign(f (a)) then a = c else b = c (new interval)
End
Output(”Method failed.”) max number of steps exceeded
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Bisection method: Example
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Bisection method: Analysis

In the hypotheses of Bolzano’s theorem (f continuous with opposite signs
at the endpoints of its interval of definition) the bisection method
converges always to a root of f , but it is slow: the absolute value of the
error is halved at each step, that is, the method converges linearly.

If c1 is the midpoint of [a,b], and ck is the midpoint of the interval at the
kth step, the error is bounded by

|ck − α| ≤
b − a

2k

This relation can be used to determine in advance the number of
iterations needed to converge to a root within a given tolerance:

b − a

2k
≤ TOL =⇒ k ≥ log2(b − a)− log2 TOL

Ex: b − a = 1, TOL= 10−3 gives k ≥ 3 log2 10, TOL= 10−4 gives
k ≥ 4 log2 10 and so on. Since log2 10 ' 3.32, to gain one order of
accuracy we need a little more than 3 iterations.
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Newton’s method

For each iterate xk , the function f is approximated by its tangent in xk :

f (x) ≈ f (xk) + f ′(xk)(x − xk)

Then we impose that the right-hand side is 0 for x = xk+1. Thus,

xk+1 = xk −
f (xk)

f ′(xk)

More assumptions needed on f :

f must be differentiable, and f ′ must not vanish.

the initial guess x0 must be chosen well, otherwise the method might
fail

suitable stopping criteria have to be introduced to decide when to
stop the procedure (no intervals here.......).

December 11, 2023 7 / 24



Newton’s method

For each iterate xk , the function f is approximated by its tangent in xk :

f (x) ≈ f (xk) + f ′(xk)(x − xk)

Then we impose that the right-hand side is 0 for x = xk+1. Thus,

xk+1 = xk −
f (xk)

f ′(xk)

More assumptions needed on f :

f must be differentiable, and f ′ must not vanish.

the initial guess x0 must be chosen well, otherwise the method might
fail

suitable stopping criteria have to be introduced to decide when to
stop the procedure (no intervals here.......).

December 11, 2023 7 / 24



Example
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Exercise
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Newton’s method: Convergence theorem

Theorem

Let f ∈ C 2([a, b]) such that:

1 f (a)f (b) < 0 (∗)
2 f ′(x) 6= 0 ∀x ∈ [a, b] (∗∗)
3 f ′′(x) 6= 0 ∀x ∈ [a, b] (∗ ∗ ∗)

Let the initial guess x0 be a Fourier point (i.e., a point where f and f ′′

have the same sign). Then Newton sequence

xk+1 = xk −
f (xk)

f ′(xk)
k = 0, 1, 2, · · · (1)

converges to the unique α such that f (α) = 0. Moreover, the order of
convergence is 2, that is:

∃C > 0 : |xk+1 − α| ≤ C |xk − α|2. (2)
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Newton’s method: Proof of the Theorem

Proof.

Since f is continuous and has opposite signs at the endpoints then the
equation f (x) = 0 has at least one solution, say α. Moreover condition
(**) implies that α is unique (f is monotone).

To prove convergence, let us assume for instance that f is as follows:
f (a) < 0, f (b) > 0, f ′ > 0, f ′′ > 0, so that the initial guess x0 is any
point where f (x0) > 0. We shall prove that Newton’s sequence {xn} is a
monotonic decreasing sequence bounded by below.
Since f (x0) > 0 and f ′ > 0 we have

x1 = x0 −
f (x0)

f ′(x0)
< x0

Since f ′′ > 0, the tangent to f in (x0, f (x0)) crosses the x-axis before α.
Hence,

α < x1 < x0
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We had α < x1 < x0, implying that f (x1) > 0 so that x1 is itself a Fourier
point. Then we restart with x1 as initial point, and repeating the same
argument as before we would get

α < x2 < x1

with f (x2) > 0.

Proceeding in this way we have

α < xk < xk−1

for all positive integer k .
Hence, {xn} being a monotonic decreasing sequence bounded by below, it
has a limit, that is,

∃ η such that lim
k→∞

xk = η.
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Taking the limit in (1) for k →∞ (and remembering that both f and f ′

are continuous, and f ′ is always 6= 0), we have

lim
k→∞

(xk+1) = lim
k→∞

(
xk −

f (xk)

f ′(xk)

)
=⇒ η = η − f (η)

f ′(η)
=⇒ f (η) = 0

Then, η is a root of f (x) = 0, and since the root is unique, η ≡ α.
It remains to prove (2). For this, use Taylor expansion centered in xk , with
Lagrange remainder1

f (α) = f (xk) + (α− xk)f ′(xk) +
(α− xk)2

2
f ′′(z) z between α and xk .

Now: f (α) = 0, f ′(x) is always 6= 0 so we can divide by f ′(xk) and get

0 =
f (xk)

f ′(xk)
− xk︸ ︷︷ ︸+α +

(α− xk)2

2f ′(xk)
f ′′(z)

−xk+1

1see
https://en.wikipedia.org/wiki/Taylor%27s theorem#Explicit formulas for the remainder
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We found

0 =
f (xk)

f ′(xk)
− xk︸ ︷︷ ︸+α +

(α− xk)2

2f ′(xk)
f ′′(z)

−xk+1

that we re-write as

xk+1 − α =
(α− xk)2

2f ′(xk)
f ′′(z).

Thus,

|xk+1 − α| =
(α− xk)2

2

|f ′′(z)|
|f ′(xk)|

≤ (α− xk)2

2

max |f ′′(x)|
min |f ′(x)|

Therefore (2) holds with

C =
max |f ′′(x)|
min |f ′(x)|

which exists since both |f ′(x)| and |f ′′(x)| are continuous on the closed
interval, and f ′(x) is always different from zero.
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Newton’s method: Practical use of the theorem

The practical use of the above Convergence theorem is not easy.
• Often difficult, if not impossible, to check that all the assumptions are
verified.
In practice, we interpret the Theorem as: if x0 is “close enough” to the
(unknown) root, the method converges, and converges fast.
• Suggestions: the graphics of the function (if available), and a few
bisection steps help in locating the root with a rough approximation. Then
choose x0 in order to start Newton’s method and obtain a much more
accurate evaluation of the root.

If α is a multiple root (f ′(α) = 0 ) the method is in troubles.
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Newton’s method: Stopping criteria 1

Unlike with bisection method, here there are no intervals that become
smaller and smaller, but just the sequence of iterates.

A reasonable criterion could be

test on the iterates: stop at the first iteration n such that

|xn − xn−1| ≤ Tol ,

and take xn as “root”.

This would work, unless the function is very steep in the vicinity of the
root (that is, if |f ′(α)| >> 1): the tangents being almost vertical, two
iterates might be very close to each other but not close enough to the root
to make f (xn) also small, and the risk is to stop when f (xn) is still big.
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Newton’s method: Stopping criteria 2

In this situation it would be better to use the

test on the residual: stop at the first iteration n such that

|f (xn)| ≤ Tol ,

and take xn as “root”.

In contrast to the previous criterion, this one would fail if the function is
very flat in the vicinity of the root (that is, if |f ′(α)| << 1). In this case
|f (xn)| could be small, but xn could still be far from the root.

What to do then??

Safer to use both criteria, and stop when both of them are verified.
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Newton’s method: Examples of choices of x0

f (x) = x3 − 5x2 + 9x − 45 in [3, 6] α = 5

3 4 5 6 7 8 9
−40

−30

−20

−10

0

10

20

30

40

50

Bad x0: x0 = 3⇒ x1 = 9 outside [3, 6]
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Newton’s method: Examples of choices of x0

f (x) = x3 − 5x2 + 9x − 45 in [3, 6] α = 5
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Good x0: 3 iterations with Tol = 1.e − 3
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Newton’s method: Solution of nonlinear systems

We have to solve a system of N nonlinear equations:
f1(x1, x2, · · · , xN) = 0

f2(x1, x2, · · · , xN) = 0

...

fN(x1, x2, · · · , xN) = 0

or, in compact form,
F (x) = 0,

having set
x = (x1, x2, · · · , xN), F = (f1, f2, · · · , fN)
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Newton method

We mimic what done for a single equation f (x) = 0: starting from an
initial guess x0 we constructed a sequence by linearizing f at each point
and replacing it by its tangent, i.e., its Taylor polynomial of degree 1.

For systems we do the same:

starting from a point x (0) = (x
(0)
1 , x

(0)
2 , · · · , x (0)N ) we construct a sequence

{x (k)} by

linearising F at each point through its Taylor expansion of degree 1:

F (x) ' F (x (k)) + JF (x (k))(x − x (k))

and then defining x (k+1) as the solution of

F (x (k)) + JF (x (k))(x (k+1) − x (k)) = 0.
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JF (x (k)) is the jacobian matrix of F evaluated at the point x (k):

JF (x) =



∂f1(x)

∂x1

∂f1(x)

∂x2
· · · · · · ∂f1(x)

∂xN

∂f2(x)

∂x1

∂f2(x)

∂x2
· · · · · · ∂f2(x)

∂xN
...
...

∂fN(x)

∂x1

∂fN(x)

∂x2
· · · · · · ∂fN(x)

∂xN


,

System F (x (k)) + JF (x (k))(x (k+1) − x (k)) = 0 can obviously be written
as: xk+1 = x (k) − (JF (x (k)))−1F (x (k)).
In the actual computation of xk+1 we do not compute the inverse matrix
(JF (x (k)))−1, but we solve the system

JF (x (k))xk+1 = JF (x (k))x (k) − F (x (k)).
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Newton’s method: Algorithm

Given x (0) ∈ RN , for k = 0, 1, · · ·

solve JF (x (k))xk+1 = JF (x (k))x (k) − F (x (k)) by the following steps

• solve JF (x (k))δ(k) = −F (x (k))

• set x (k+1) = x (k) + δ(k)

At each iteration k we have to solve a linear system with matrix JF (x (k))
(that is the most expensive part of the algorithm).

Note that by introducing the unknown δ(k) we pay an extra sum
(x (k+1) = x (k) + δ(k)) but we save the (much more expensive)
matrix-vector multiplication JF (x (k))x (k).
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Newton’s method: Stopping criteria

They are the same two criteria that we saw for scalar equations:

• test on the iterates: stop at iteration k such that

‖x (k) − x (k−1)‖ ≤ Tol

for some vector norm, and take x (k) as “root”.

• test on the residual: stop at iteration k such that

‖F (x (k))‖ ≤ Tol ,

and take x (k) as “root”.

Here too, it would be wise in practice to use both criteria, and stop when
both of them are satisfied.
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